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The single determinantal Virtual Orbital description of the excited state is compared with the 
excitonic description for an homogeneous chain of n subunits. The single determinant built from 
canonical delocalized MO's represents the excited state as a "democratic '' mixture of Charge Transfer 
excitations; the long distances electron jumps are highly probable while the local excitations within 
the bonds have a vanishing weight when the dimension increases. On the contrary the excitonic treat, 
ment (and therefore the Configuration Interaction between singly excited configurations) describes 
the excited state as mainly built from local excitations and Charge Transfer excitations between adja- 
cent bonds; the long distance electron transfer probability decreases exponentially with the amplitude 
of the electron jump. Therefore one may say that the Orbital description of the excited state over- 
estimates the electronic delocalization in the excited state. It is shown that the fluctuation of the dipole 
moment in the excited state varies as n 2 in the Orbital description while in the excitonic model this 
fluctuation is bounded. 

On compare les descriptions excitonique et monodeterminantale (dite Approximation d'Orbitale 
Virtuelle) des etats excites d'une chaine homog~ne de n sous-unit~s. La representation/~ un seul d&er- 
minant fi l'aide d'orbitales SCF canoniques d~crit l'~tat excit~ comme un m~lange ~d6mocratique~ 
d'~excitations~ de transfert de charge: les transferts d'61ectrons ~t longue distance y sont tr~s probables, 
tandis que le poids des excitations locales g l'int~rieur des liaisons tend vers z~ro quand n augmente. 
Au contraire le traitement excitonique (et donc l'interaction de configuration des configurations 
monoexcit~es) d~crit l'&at excit6/t l'aide d'excitations locales et d'excitations de transfert de charge 
5. courte distance; la probabilit~ de transferts 5_ longue distance d6cro~t exponentiellement avec l'am- 
pleur du saut. On peut doric dire que la description fi un seul d&erminant surestimequalitativement 
la d~localisation ~lectronique dans l'&at excit6. On montre que la fluctuation quantique du moment 
dipolaire dans l'&at excit~ cro~t comme n 2 dans la description orbitale, tandis qu'elle reste born& 
dans le module excitonique. 

Die Beschreibung eines angeregten Zustandes einer homogenen Kette yon n Untereinheiten durch 
eine Determinante mit virtuellen Orbitalen wird mit der excitonischen Beschreibung verglichen. 
Die einzelne Determinante, die aus kanonischen delokalisierten MO's aufgebaut wird, stellt den ange- 
regten Zustand als eine Mischung yon Anregungen mit Ladungstibertragung dar; die Ubertragungen 
yon Elektronen fiber grol3e Entfernungen sind sehr wahrscheinlich, w~ihrend lokale Anregungen 
innerhalb der Bindungen ein verschwindendes Gewicht haben, falls die Zahl n ansteigt. Im Gegensatz 
dazu beschreibt die excitonische Darstellung (und somit die Konfigurationenwechselwirkung mit 
einfach angeregten Konfigurationen) die angeregten Zustgnde haupts~ichlich durch lokale Anregungen 
mit Ladungstibertragung zwischen benachbarten Bindungen; die Wahrscheinlichkeit der 121bertra- 
gung tiber gr6Bere Entfernungen nimmt exponentiell mit der Weite des ,,Elektronensprungs" ab. 
Man kann deshalb sagen, dal3 die Orbitalbeschreibung eines angeregten Zustands die Elektronende- 
lokalisierung tiberbewertet. Es wird gezeigt, dal3 die Fluktuation des Dipolmoments im angeregten 
Zustand wie n 2 in der Orbitalbeschreibung variiert, wiihrend sie im excitonischen Modell beschr~inkt 
bleibt. 
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Localized Molecular Orbitals are beginning to be widely used for the study 
of ground state properties (total ground state energy 1, conformational proper- 
ties 2, Electron Spin Resonance 3 and Nuclear Magnetic Resonance 4 coupling 
constants). They have even been used for the study of the stereoselectivity of con- 
certed reactions [7, 81, i.e. outside of the ground state equilibrium region, for nucle- 
ar configurations where the bond definition begins to be ambiguous. 

The main objection against the localized MO's concerns the representation 
of excited and ionized states [9]. The idea that the ESCA or ESR experiments 
show the orbital energy or the orbital repartition as physical features, can only 
be regarded as naive. But it is clear that the use of symmetry delocalized MO's 
allows a rather satisfactory single determinantal representation of the excited or 
ionized states, and the adequacy of the delocalized symmetry MO's for a simple 
single determinantal representation of the delocalized spectroscopic phenomena 
certainly explains the complete domination of the delocalized MO's methods 
over the research and pedagogic works of quantum chemistry [10]. 

The excited or ionized states may be represented as well from the equivalent 
sets of localized MO's, using then multideterminantal wave-functions; the exci- 
ted state appears then as a linear combination of local single excitations, the 
coefficients of this combination resulting from a partial Configuration Interaction 
between the local excitations. This is simply the "excitonic" representation of 
excited states, which has received some applications in molecular physics [ 11 - 14]. 
In some sense the situation may be summarized as follows. 

- The use of symmetry delocalized MO's, generally implies the variational 
diagonalization of a one-electron effective hamiltonian (a Hiickel type one, or 
an Hartree-Fock hamiltonian, with possible modifications of the internal field 
representation in order to get better representations of the excited state). This 
rather blind procedure allows a single determinantal zeroth order representation 
of the excited state. 

- The excitonic model may use chemically meaningfull localized MO's, atomic 
core orbitals, bonding and antibonding bond MO's and lone pairs but the 
description of the excited state requires the diagonalization of a partial CI matrix; 
the blind procedure is simply displaced from the MO construction to the total 
WF construction. 

In the present paper the two descriptions will be compared on a simple model 
case, the case of linear homogeneous polymer. It will be shown that the charge- 
fluctuations (i.e. the probability electron transfers between distant bonds) are 
overestimated in the single determinantal orbital description of the excited state. 

I For single determinantal approximation, see Ref. [la]; for multiconfigurational perturba- 
tire method from SCF localized MO's, ab initio calculations, see Ref. [2a], semiempirical calculations, 
see Ref. [2b]; for multiconfigurational perturbative method from non-SCF bond MO's, one must 
quote the semi-empirical PCILO method, see Ref. [31, and a few ab initio calculations, see first Ref. 
of [2a] and last Ref. of [3]. 

2 Ab  initio calculations, see Ref. [4]; for semiempirical calculations, the applications of the 
PCILO method (Ref. [3]) are too numerous to be quoted here. 

3 The fundamental McConnell relationship was already based on the use of localized MO's, 
[5a] ; for some recent ab initio calculations see Ref. [5b]; for semiempirical calculations see the PCILO 
method for localized free radicals [5c]. 

4 For ab initio calculations, see Ref. [6a]; for semiempirical calculations, see Ref. [6b]. 
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1. Translation of the Single-Determinantai Delocalized Description of the Excitation 
in Terms of Local Excitations 

Let us consider a regular chain of n equivalent bonds. This might be a chain 
of H 2 molecules, or the ~ bonds of a linear polyene. Let us consider the (SCF) 
localized MO's on these bonds, p~, and the corresponding antibonding (SCF) 
localized MO's in the valence shell p~,5. One may establish easily the expression 
of the occupied delocalized (SCF) MO's, by diagonalizing the Fock operator 
between the bonding localized MO's. Neglecting end effects, and assuming that 
the Fock operator between non adjacent bonds are negligible in comparison of 
the Fock operator between adjacent bonds, 

(p~fFJ ps) - = E V s  

(P~fFI P~+ a) = (p~IF[ p~_ a )  = F g s  

(psIFI ps+r) ~ F  Vs and [r[> I 

(1) 

one gets a Fock operator which keeps the form of a Hiickel type topological 
matrix, and the delocalized MO's Pj are given by 

V 2  jrcs 
Pj = ~ CjsPs Cjs = ~ s i n - -  (2) 

s n + l  

The corresponding energies increase when j varies from 1 to n. The form of the 
Fock operator between the virtual orbitals would be the same 

(p* IF[ p~*) = E* V s 

(p* IFI p~+ , )  = F*Vs 

(p*lFlp~+r)--O Vs, r > l  

(3) 

and the delocalized HF MO's are given by 

* *  , 1 [ - - 2  . j~s  P* = ~ cjsps cjs = sm (4) 
V n + l  n + l  

The corresponding energies now decrease when n varies from 1 to n, because 
FF* < 0, as may be easily understood by considering the respective phase beha- 
viour of the occupied and virtual localized MO's. 

+ + + + 

Pi Pi+l 
+ -- + -- 

p~ p~*+~ 

Therefore the ordering of the delocalized SCF MO's is given by Fig. 1, which 
shows the "pairing" of occupied and virtual MO's. 

5 These SCF localized MO's may be obtained from the usual canonical MO's through any 
localization process, see Ref. [15]. 
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Fig. 1. Ordering of the delocalized MO's obtained from the diagonalization of the Fock operators 
for the occupied and virtual (HF) localized MO's. The dashed lines represent the limit of the orbital 

energies when n tends to infinity 

The canonical and localized descriptions of the SCF ground state determinant 
are given by 

�9 o = d Pi = + # 1-I p~. (5) 
i= l  r=i 

These two descriptions are equivalent since the two sets {Pr} and {P~} are obtai- 
ned from each other through a unitary transformation [16]. 

N.B. - If the Pi MO's are SCF localized MO's, the Fock operator is zero be- 
tween occupied and virtual MO's (due to the Brillouin's theorem). This is the 
reason why we diagonalized separately the two blocks of the Fock operator. If 
the p~ MO's where fully localized MO's (asin the PCILO method and the usual 
excitonic treatments), the Fock operator would not split in two blocks, but the 
diagonalization of the two blocks for occupied and virtual MO's would still 
give delocalized MO's very close to the SCF ones, since the SCF localized and 
fully localized MO's are very close [2]. 
Then the unoptimized single determinantal representation of the excited state 
(which is frequently called the Virtual Orbital approximation) is obtained by 
the substitution of a virtual MO P~, to an occupied one P~. In the 2 nd quanti- 
zation formalism, this may be written as: 

(6) 

Expressing the canonical creation and annihilation operators in terms .of local 
creation and annihilation operators (through Eqs. (2) and (4)) one gets an equiv- 
alent expression of the excitation procedure 

(JT) n +2 1 _ . inr  . j n s  t~ -- ~ ~ sin - -  sin - -  av+. april) 0 (7) 
s n + l  n + l  
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where 4 o may expressed now as the antisymmetrized product of local MO's 

- ~ sin i- sin (8) 
n + l  s n +  n ~ - i  -q~ ' 

The single excitation from Pi to P :  appears as the linear combination of local 
excitations from the bonds r toward the antibonding MO of the bonds s. These 
excitations may be described in general as electron transfer from one region to 
another. Some of the local excitations, for which s = r, do not imply such an 
electron transfer since they simply represent a (rcT~*) excitation in the ethylenic 
system of a (double) bond. These excitations (r = s) will be called local excitations 
(LEs) while the former ones (r + s)will be called Charge Transfer excitations 
(CTEs). The CTEs will be characterized by the amplitude of the electron jump 
through the quantity p = [r - s[ and identified as PCTE. 

Let us analyze now the relative weight of local and charge transfer excitations 
in the (lowest) excitations. The weight of LE is given by 

\ n -'~ 1 Sln ~ i - }  " (9) 

Since sin2~ < 1 (i*) 4 
< _ _  

dLE i n + 1 

A m~  cc rate calculat ~ - n + l  1 + -  

bounded by a constant whatever i,j, n. 
Therefore the relative weight of LE in the Virtual Orbital description of 

excited states decreases as 1In when the dimension n of the conjugated system 
increases 6. 

On the contrary the weight of the CTE increases towards 1. The excitations 
are treated almost democratically, whatever the distance between the departure 
and arrival bonds, i.e. the amplitude of the electron jump. It will be seen in Appen- 
dix 1 that a jump over p intermediate bonds becomes as probable as the local 
excitations when n is much larger than p. 

(lo) 

] 
n + l  J where f i s  

2. The Excitonic  Wave-Function 

Let us turn back now towards the excitonic model, in order to analyze the 
structure of the lowest excited states. The excitonic matrix appears as built from 

several blocks. One block deals with the LE excitations ( P ; ) a n d  their matrix 

6 These results are not modified by considering the proper S 2 eigenfunctions for the excited state 

instead of the single determinant ~ I ] ] )o f  Eq. (6). 
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elements. For singlet states these matrix elements are essentially transition 
dipole-transition dipole interactions 

The second term decreases exponentially with the distance Rrs between the bonds 
r and s, and the first one decreases as 1/R3s. For the triplet state the dipolar inter- 
action disappears. In both cases one may consider that the only important off 
diagonal elements occur between excitations on adjacent bonds 

(PrP, , P~+ tP~+ 1) = (P,P*, Pr- lP*  1) = b (12) 

The LE are less energetic than the CTE, as may be seen from the zeroth-order 

AE(S;) =<p*IFIp*>-<prlFIp.>-Jp~p*~ + Kp, p* -t- Kp,p*.  (13) 

In this expression the difference between the diagonal elements of the Fock 
operator are independant on the distance between r and s, while the charge- 
charge interaction Jprp* decreases as R~ 1. Kp,p* decreases exponentially with 
R,s but remains always much smaller than dp~p* and the localized transition 
energies may be ordered in the following way: 

(14) 

�9 ' < " "  < (<P*I FIp*> - <PrI FIp,>). 

One may build therefore the excitonic matrix in a basis of localized excited 
determinants in which the LE occur first, followed by CTExcitations between 
adjacent bonds, and so on ... The LE determinants are coupled with the CTE 
ones, through 

If r, s and t are all different this matrix element may be approximated through 
the Mulliken's approximation 

<• ( r / )  H �9 (st*)> =l/2<p~,p*> [<rs, r*s>+ <rt*[r*t*>] (15) 

<psi pt*> decreases exponentially as exp(-Rs~), and the two integrals decrease 
as R~ 2 and R~ 2 respectively. The matrix element will be negligible except when 
t = r or s* = r*. In such a case 

(16) 
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Ifs and r are adjacent bonds (s  = r + 1), these matrix elements are rather important 

Iq~(r;) H ~((r +-rl)*)) =(p*lF-J, lp*• A ~ 
(17) /O(r;) ~ O( rr" 

keep only these interactions, as we did when diagonalizing the 
Fock operator. In the same way the CTE between adjacent bonds 

and we shall 
ground state 
are coupled with some CTE at two bonds distances. 

08) 
/-/ = - (p,[ F + J(,+ 1)IP,+ 2) = B 2 .  

r \ r + 2  1 /  

The structure of the excitonic CI matrix is shown in Fig. 2. Then, taking benefit 
of the fact that A E o < A E 1 < A E 2 etc.., one may try to search the eigenfunctions 
of the CI matrix by a two steps procedure. 

a) diagonalization of the CI matrix of the LE only. This is the original exci- 
tonic treatment proposed by Simpson [11]. This step gives some zeroth order 
wave-functions ~o m" 

{5;} 

L E iCTE 2CTE 

. . . . .  . . . .  . . . .  

bEo b 
AE.~'.. 0 

i � 9  Q. 

�9 I �9  i b 

AE o 

A1 
0 

0 ""A1 0 
�9 B 1 

Q~ 
~ O 
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*~ 

"�9 
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"o o 

%�9 

A ~  

Fig. 2. Structure of the excitonic matrix 
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b) perturbation of these zeroth order wave functions under the influence of 
the CTE, through a classical RS procedure. 

Since the CI matrix restricted to the LE has a Hiickel-type structure, one 
knows its eigenfunctions and eigenvalues 

T o =  ,=1 ~ Cmr~(r;) with ~ n ~ "  mnr (19) Cmr = sin n + 1 ' 

mTC 
AE~ = AE o + 2b cos - - .  (20) 

n + l  

Then one may perturb T ~ under the influence of the CTE. The theoretical 
details of such a procedure may be found elsewhere [17]. Due to the structure of 
the CI matrix when one neglects the long distances overlap distributions, the 
first order wave-function T A will only involve the 1CTE, i.e. the CTE between 
adjacent bonds. 

TA = ~,[/To H •((r ;1)*))+((r; !)*)_i_/To. +((r ;11"))q~((r ;1)*)] 
x (AE ~  AE1)-'. (21) 

In order to analyse the relative weight of the LE and CTE in that model, we 
must calculate the norm of the first order perturbed wave-function. 

(TAIT1)=(AE~176 H + ( ( r ; 1 ) * ) )  2 

+(T~176 

=67 ((P (;;)/-/ (P ((r ;1)*))_I_ C.(.+,)((P ,(r-t-((r-i-1)1)*/I H 4)/, ((r ; 1 ) * ) )  

= Cm, A1 + cm(,+ 1)B1 �9 (23) 

"~(. mru m(r + 1)rc )2 2-~--(AE~ ,=, l sm-~- -1  A l + s i n  n + l  B i .  (241 
This summation is easy to perform through elementary trigonometrical transfor- 
mations and gives 

( A t + B 1 ) 2  1 AE~ 1 (TAIT1)=4 + ~ f -  f(n,m)=Nt + ~ f i T  f(n,m ) (25) 

where f(n, m) is a trigonometric function of n and m bounded by a constant. 
Therefore the weight of the CTE in the first order perturbed wave functions 
tends towards a constant when n increases. Since (T~ T ~ = 1, the ratio of the 
LE in the first order perturbed wave function tends towards a constant 

( T~ T ~ 1 
when n-+ oo. (26) 

( tt#O I T ~  -I- ( Tirol tlP'A) -- 1 -I- N 1 

Thus 

< TAI TA> = 
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The further PCTE excitations would appear with exponentially decreasing weights: 
in the first order wave-function the coefficients would imply exponentially decreas- 
ing overlap distributions q)rCp(r+p), and if one only keeps the interactions be- 
tween adjacent bonds, they would only appear at the pth order of perturbation 
with a weight proportional to x p (See Appendix 2). 

3. Discussion of the Electronic Delocalization in the Excited State 

This analysis rests upon the convergence of the perturbation expansion. 
This convergence is questionable for the higher eigenfunctions of the LE CI 
matrix, but is certainly valid for the lowest excitations. The numerical diagona- 
lizations of the full excitonic matrix actually show that the relative weight of LE 
tends towards 45 % in the series of linear polyenes [18]. 

The result of the CI procedure gives therefore a description of the excited 
states which differs qualitatively from the Virtual Orbital single determinant 
description. The single determinant built from canonical delocalized MO's 
represents the excited state as a "democratic" mixture of Charge Transfer Exci- 
tations. The long distance electron jumps are highly probable while the local 
excitations in the bonds have a vanishing weight when the dimension increases. 
On the contrary the excitonic treatment describes the excited state as mainly 
built from local excitations in the bond (the corresponding probability decreases 
but tends towards a constant when the number of equivalent bonds increases) 
and from 1CTE between adjacent bonds. The electron jumps probabilities decrease 
exponentially with the amplitude of the jump. 

It had been noticed already that in the Hiickel theory the Orbital description 
of the excited state only involves exchange or delocalization effects which are 
therefore overestimated to reproduce implicitely the bielectronic effects 7 One 
sees here that going from the Htickel to the SCF model does not change quati- 
tatively the validity of the single determinantal description of the excited state as 
regard the electronic delocalization. 

This result concerns not only the excitonic treatment but the usual Configu- 
ration Interaction between the singly excited configurations; since the canonical 
MO's are obtained from the localized ones by two unitary transformations in 
the spaces of occupied and virtual MO's, the space of the singly excited determi- 
nants is invariant in these changes of the MO's, and the eigenvectors of the CI 
matrix of singly excited determinants are the same, regardless of the localized 
or delocalized character of the MO's. The excitonic treatment gives therefore 
some insight upon the physical effect of the CI of singly excited states, which, in 
the delocalized scheme, seems rather intricate and difficult to analyse, since all 
the matrix elements loose their local character. Once again the localized picture 
demonstrates its higher handiness and its interpretative power. 

But the most surprising result is that the canonical orbital model of the exci- 
tation in a certain sense overestimates the electronic delocalization in the excited 
state. Of course quantum mechanics describes the excitation as delocalized. 
In the statistical interpretation of quantum mechanics [20] the Hamiltonian 
and the wave-function only deal with a set of similarly prepared systems, not 

7 See Refs. [12] and [19]. 
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with a unique system, and we cannot know what happens in the excitations 
of a given molecule. The delocalization is linked to the symmetry properties 
of the Hamiltonian and does not prove anything about the local or global 
character of the excitation in each molecular system. Even in the excitonic 
model which only implies the local excitations, the excitation is delocalized, 
and, this "delocalization" due to the basic principles, cannot be removed in homo- 
genous symmetrical systems. 

But the delocalization of the electrons is completely different from the delo- 
calization of the excitation. In this loge theory [21], Daudel has proposed some 
intrinsic criteria to analyse the extent of electronic delocalization; the probabi- 
lity of finding two and only two electrons in each loge of a partition of space 
may be maximized with respect to the definition of the loge and this maximum 
gives an estimate of the physical electronic localization. The higher this proba- 
bility, the less probable are the situations with 1 electron in loge i and 3 electrons 
in loge j. 

Along the same direction, and according to the statistical interpretation of 
the wave-function we proposed to study the fluctuation of the number of electrons 
in each loge [22]. When the fluctuations are important, the system is not well 
localizable. One may also consider as a measure of the electronic delocalization 
the fluctuations of the dipole moment; in a symmetric or non polar system, the 
"permanent" or mean dipole moment will be zero but the ionic structures in 
which one electron has jumped from its box i to the box j introduce some tran- 
sient dipoles. This concept may be applied to the excited states, and from that 
point of view it is clear that the orbital description of the excited state overesti- 
mates the electronic delocalization. This description (Eq. (8)) is very close the 
"fully democratic" delocalized description of the excited state where each con- 

[ ~ k  

figuration ~(sr" ) would appear with a probability 1 I n  2 . 

k - - /  

for a linear system, the configuration ~b(sr *) introduces a dipole moment equal to 
\ / 

~7~, = eR~rs = e~(r- s) (28) 

where l is the standard distance between two bonds (s 1). We shall neglect 
here the transition dipole moment between different CTE excitations, even when 
they differ by two adjacent MO's 

{~(~) ~-R eb((s+l))*} =(s*[R[(s+l,*)~-O, 
as would be done in the CNDO hypotheses for fully localized MO's. All the 
configurations where r - s  = q contribute to the same value .ffq = e-(q, which 

n - Iq l  
appears with the probability p~ = n~-T--. One knows therefore the full histo- 

gram of the dipole momen{ of the excited state, i.e. the spectral decomposition 
of the dipole moment in the excited state, which is reported in Fig. 3. 
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�9 1 n-1 
n --A-r n . -2  
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- n  - 2  -1 1 2 n q 

Fig, 3. Distribution of the dipole moment of the excited state for the delocalized single determinantal 
description 
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The fluctuation of the dipole moment in the excited state may be calculated 
immediately 

la--1 
=2 ~ ~ pq=2Y(e/) 2 q2 n - q  _2(e/)2 ~ (nq2_q3) 

q=l  ~ " q = l  

Since 
n -  1 H3 n -  1 H4 

qZ_~ and ~ qS_~__ 
q=l 3 4 q = I  

~- = 2(el) e na/6. 

The fluctuation of the dipole moment increases as n z when the dimension of the 
system increases. One may see easily that this feature is kept when one uses 
Eq. (8) for the wave-function, instead of the "fully democratic" single determinan- 
tal representation of Eq. (27). 

On the contrary the excitonic model (i.e. the full CI of singly excited deter- 
minants, whatever the basis set of MO's) will give a completely different histogram. 
Since the wave-function appears as mainly built from the LE and 1CTE between 
adjacent bonds, in a ratio which tends towards a constant, the histogram tends 
towards a constant shape and the fluctuation of the dipole moment also increases 
towards a constant when n increases. 

This result remains valid when one takes into account the long distances 
PCTE with their exponentially decreasing weight e ap (cf. Appendix 2). Their con- 
tribution to the fluctuation of the dipole moment is indeed proportional to 

n--1 
2 ~ pZeae. This sum may be bracketed through the integration 

p = l  

n -1  n -1  
iP2e"PdP < ~, P 2eap< S P2e~PdP . 
1 p = l  0 
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i (n2 2n 2) p2 eap dp = ean 0 a a 2 + -aT is bonded whatever n and therefore the fluc- 

tuation of the dipole moment is bonded, a being negative as may be seen from 
Appendix 2. 

The configuration Interaction between the singly excited configurations quali- 
tatively changes the picture of the excited state. In the Orbital description, the 
mean number of electrons per bond is correct, but the fluctuations of electronic 
positions are much too large. The CI tends to bring back the electrons two by 
two in each loge. One may say that the orbital description of the excited state is 
too disordered, and that the CI brings some order in the excited state, diminishes 
the entropy of the description. The excitonic model looses the single determinantal 
character and its related advantages, but it gives immediately a more correct 
representation of the excited state. Table 1 summarizes the main conclusions of 
this work. 

In the following paper, we shall demonstrate that the qualitative differences 
between the Orbital and Excitonic descriptions of the excited state imply some 
qualitative differences in the descriptions of the a - zc coupling effect on the rcrc* 
transition, and in the orbital reorganisation of the excited states. 

Table 1. Summary of the comparison between delocalized and localized pictures of the excitation 

Delocalized picture Localized picture 

MO's Delocalized Pi, Pj* 

Ground State determinant 4o 

Excited determinants 

Representation of the excited 
state 

Single determinantal approx. 

CI between the single excited 
determinants 

Localized p~, p,~, {p} = U {IP} U unitary 

identical q) o 

Local excitations ~ (;*) P)*) 

~tJ~) charge transfer excitations ~ ( ( r+ 

14rtual orbital approximation 

] may be expressed in terms of 
r 

woi  , of 

The fluctuation of the dipole moment in the 
excited state behaves like n 2 

Usual CIS approximation 
This treatment is identical to the exci- 
tonic one.The conclusions obtained for 
the excitonic treatment hold for the 
CIS approximation, which therefore 
relocalizes the excitation with respect 
to the VO approximation. 

no single determinantal approximation 

I Excitonic method 
] The weight of 
/ LE's ~ constant C (~  50%) 

-=~ ICTE's - .  1-(2 (~  50%) 
when n --* oo 

| The fluctuation of the dipole moment 
in the excited state ~ constant. 
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Appendix 1 

Weight of the VCTEs in the Orbital Model 

According to Eq. (8) the weight of the PCTEs in the orbital model is given by 

8 "-P izcr jzc(r+p) 
Q(n, p) - (n + 1) 2 ~ sin2 i- sinz r=l n +  n + l  

for the transition i~j*. For sake of simplicity, the analysis will be limited to the 
lowest transition, the N - V transition, corresponding to i = j  = n. Then 

8 n - p  . 2 n z c r  2nz~(r+p) 
Q(n,p)- n + l  ~ ~ san ~ s i n  2 

r=l n +  n + l  

_ 8 "~- (sin ~ i _  sin~ r r c r  r + p ]  2 
(n + 1) 2 ~=t n ~ i - /  

n - p  )2  2 z (  - - -  cos cos p/2) 
( n + l )  2 ~=i\ n + l  n +  

- (n + 1) 2 c~ n + ]- + c~ - 2 cos n + l  n + l  ) 
rcp rcp 

COS 2 - -  (n - -  p - -  1) COS 2 
n + l  n + l  

rc(2r+p) n - p - 1  2pro 2p~z ( 2re ) 
Zcos2 n + l  - 2 + s i n - - n + l  - c ~  n - ~  l + t g  n + ] -  

p~z (2r + p)~ _ sin 2p~ 1 + cos ~ 1 - Z 2 c o s  n+TCOS n + i  n + l  o 

Therefore 

Q(n,p)= (n+ l )2  ( n - p - l )  1 /2+cos  n + l / + f ( n ' P )  

where f(n, p) is a trigonometric function bonded by a constant. Q(n, p) behaves as 

(n + 1) z 1 + 2 cos 2 , and when n increases for a fixed value of p, this 

quantity tends towards 3/n. 

Appendix 2 

Weight of the Long Distances Charge Transfer Excitations in the Excitonic Model 

The configuration ( ( r ; P )  *) ((r+s)*ti  n Lgo may be reached from the LE \ (r + s)) 

(where 0 < s < p) by changing progressively the hole from r to r + s through s 
hole-hole interactions, and by changing progressively the particle from (r + s)* 
to (1" + p)* through (p - s) particle particle interactions. The corresponding diagram 
is drawn in Fig. 4. For a given value of s, the s hole-hole interaction lines and the 
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p - s particle-particle interaction lines may have any relative position. The number 

of relative positions o f s b a l l s i n p - s + l  boxes is (~) and the total number of 
/ \ 

different diagrams is N--  ~ (s I = 2 p. One may have an estimate of the corre- 
s = o \P/ 

sponding propagator by assuming all the denominators to be equal to A Ea 
(which is a minorant). If one takes 

H u* 

1 
in the CNDO hypotheses, the (;) diagrams with s hole-hole interaction as occurs 

lines give a contribution 

Thecoefficientoftheconfiguration((r;P)*)inthepthordercorrection ~ i s  

equal to 

= [ ( A  + B)IA E]'. 

Therefore the PCTE's appear with coefficients exponentially decreasing with the 
amplitude of the electron jump. Their weight in the perturbed wave function 
follows the same variation. 
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